144 research outputs found

    The octahedral sheet of metamorphic 2M1-phengites: A combined EMPA and AXANES study

    Get PDF
    Two types of metamorphic phengites are known: one is linked to high pressure and is 3T; the other is 2M{sub 1}, and its composition is linked to rock-compositional constraints. This work investigates the octahedral sheet crystal-chemical differences between the two phengite types. Seven dioctahedral micas were studied: (1) one 3T phengite from an ultrahigh-pressure metagranitoid in the Dora Maira massif, Italy (P {approx} 4.3 GPa, T {approx} 730 C); (2) five 2M{sub 1} phengites from medium-P orthogneisses in the Eastern Alps metamorphic basement, Italy (P {le} 0.7 GPa, T {approx} 500-600 C); and (3) one 2M{sub 1} ferroan muscovite from pegmatite in Antarctica (P {le} 0.2 GPa, T {approx}500 C). All micas display significant extents of celadonite substitution. In particular, the 2M{sub 1}-phengite formulae (calculated on the basis of 11 O) have 0.68 < {sup IV}Al < 0.82 atoms per formula unit (apfu); octahedral atoms are dominated by Al (1.6-1.8 apfu), with minor and variable Fe (0.20-0.35 apfu) and Mg (0.05-0.17 apfu), and very minor Ti, Mn, and Cr. Total octahedral occupancies are slightly above 2.00 apfu, i.e., there seems to be partial occupancy of the third M site. For all micas, we recorded XAFS spectra on mosaics of carefullymore » separated flakes oriented flat on a plastic support that could be rotated so as to account for the polarization of the synchrotron radiation beam, and we processed them on the basis of the AXANES theory. Spectra show angle-dependent absorption variations for Al and Fe, which can be deconvoluted and fitted by dichroic effects. Pre-edges consistently show most Fe to be Fe{sup 3+} and little angle-dependent intensity variations. The 2M{sub 1}-ferroan muscovite from Antarctica displays the same AXANES behavior as 2M{sub 1}-phengites. By contrast, the ultrahigh-pressure 3T-phengite from Dora Maira (having {sup IV}Al = 0.42 apfu, and Al and Mg as the dominant octahedral constituents) has XAFS spectra that differ significantly. Not only is the {sup IV}Al feature strongly reduced, in agreement with the increased Si content, but also Fe XAFS spectra show one broad feature only, indicating that all Fe is Fe{sup 2+} in a fully disordered distribution with no angle-dependent variations. We conclude that this 3T-phengite is actually contaminated by exsolved Fe-bearing pyrope platelets, which cannot be resolved under SEM examination; by contrast, the 2M{sub 1}-phengites, unrelated to high-pressure, suggest Al/Fe{sup 3+} order over the M1 and (M2, M3) sites, as also does the 2M{sub 1} pegmatitic muscovite.« les

    In VitroReconstitution of the Recombinant Photosystem II Light-harvesting Complex CP24 and Its Spectroscopic Characterization

    Get PDF
    The light-harvesting chlorophyll a/b protein CP24, a minor subunit of the photosystem II antenna system, is a major violaxanthin-binding protein involved in the regulation of excited state concentration of chlorophyll a. This subunit is poorly characterized due to the difficulty in isolation and instability during purification procedures. We have used an alternative approach in order to gain information on the properties of this protein; the Lhcb6 cDNA has been overexpressed in bacteria in order to obtain the CP24 apoprotein, which was then reconstituted in vitro with xanthophylls, chlorophyll a, and chlorophyll b, yielding a pigment-protein complex with properties essentially identical to the native protein extracted from maize thylakoids. Although all carotenoids were supplied during refolding, the recombinant holoprotein exhibited high selectivity in xanthophyll binding by coordinating violaxanthin and lutein but not neoxanthin or beta-carotene. Each monomer bound a total of 10 chlorophyll a plus chlorophyll b and two xanthophyll molecules. Moreover, the protein could be refolded in the presence of different chlorophyll a to chlorophyll b ratios for yielding a family of recombinant proteins with different chlorophyll a/b ratios but still binding the same total number of porphyrins. A peculiar feature of CP24 was its refolding capability in the absence of lutein, contrary to the case of other homologous proteins, thus showing higher plasticity in xanthophyll binding. These characteristics of CP24 are discussed with respect to its role in binding zeaxanthin in high light stress conditions. The spectroscopic analysis of a recombinant CP24 complex binding eight chlorophyll b molecules and a single chlorophyll a molecule by Gaussian deconvolution allowed the identification of four subbands peaking at wavelengths of 638, 645, 653, and 659 nm, which have an increased amplitude with respect to the native complex and therefore identify the chlorophyll b absorption in the antenna protein environment. Gaussian subbands at wavelengths 666, 673, 679, and 686 nm are depleted in the high chlorophyll b complex, thus suggesting they derive from chlorophyll a

    The effect of optical substrates on micro-FTIR analysis of single mammalian cells

    Get PDF
    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth—viability and associated biochemistry—as well as on the IR analysis—spectral interference and optical artifacts—is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type. [Figure: see text

    Micro infrared spectroscopy discrimination capability of compounds in complex matrices of thin layers in real sample coatings from artworks

    Get PDF
    The presence of coating on manufactures either to protect them from the environment, or to give them specific properties—as well as simply to change their aspect—has been shown to be a constant practise throughout history. Their characterization is complex not only because of the inherent variability and diversity of the composition, but also due to the small amount of sample material available. A methodology to study those coatings using microFTIR is proposed. In some cases, the use of microSR-FTIR, which heavily increases spatial resolution particularly appropriate for the analysis of these heterogeneous samples, is also proposed. Data processing tools such as distribution maps of specific infrared bands and curve fitting facilitate the interpretation of the spectra and help identify heavily overlapped spectra. Through the identification of individual bands, it has been possible to discriminate materials and comprehend the interaction processes during aging. Infrared spectra from reference aged materials of known production dates and which are essential in understanding those processes are given. A set of selected case studies including materials of different chemical natures and various historical periods are presented: identification of guanine on the inner coating of a hope chest; determination of a protein glue coating from a gilded Baroque altarpiece; assessment of a beeswax superficial application during the historical restoration of a late 19th century canvas painting; identification of impurities of shellac wax in a shellac coating on a wood moulding from a medieval altarpiece; aging and reaction compounds in Pinus resin, drying oil and green copper pigment mixtures used as colour coatings on Baroque and modern desks.Peer ReviewedPreprin

    Stress–strain relationships and yielding of metal-organic framework monoliths

    Get PDF
    Metal-organic frameworks (MOFs) have emerged as a versatile material platform for a wide range of applications. However, the development of practical devices is constrained by their inherently low mechanical stability. The synthesis of MOFs in a monolithic morphology represents a viable way for the transition of these materials from laboratory research to real-world applications. For the design of MOF-based devices, the mechanical characterization of such materials cannot be overlooked. In this regard, stress-strain relationships represent the most valuable tool for assessing the mechanical response of materials. Here, we use flat punch nanoindentation, micropillar compression and Raman microspectroscopy to investigate the stress-strain behaviour of MOF monoliths. A pseudo-plastic flow is observed under indentation, where the confining pressure prevents unstable crack propagation. Material flow is accommodated by grain boundary sliding, with occasional stepwise cracking to accommodate excessive stress building up. Micropillar compression reveals a brittle failure of ZIF-8, while plastic flow is observed for MIL-68

    FTIR imaging in diffusion studies: CO2 and H2O in a synthetic sector-zoned beryl

    Get PDF
    In this work we investigate the strongly inhomogeneous distribution of CO2 and H2O in a synthetic beryl having a peculiar hourglass zoning of Cr due to the crystal growth. The sample was treated at 800°C, 500 MPa, in a CO2-rich atmosphere. High-resolution FESEM images revealed that the hourglass boundary is not correlated to physical discontinuities, at least at the scale of tens of nanometers. Polarized FPA-FTIR imaging, on the other side, revealed that the chemical zoning acts as a fast pathway for carbon dioxide diffusion, a feature never observed so far in minerals. The hourglass zone boundary may be thus considered as a structural defect possibly due to the mismatch induced by the different growth rates of each sector. High-resolution synchrotron-light FTIR imaging, in addition, also allows enhancement of CO2 diffusion along the hourglass boundary to be distinguished from diffusion along fractures in the grain. Therefore, FTIR imaging provides evidence that different diffusion mechanisms may locally combine, suggesting that the distribution of the target molecules needs to be carefully characterized in experimental studies. This piece of information is mandatory when the study is aimed at extracting diffusion coefficients from analytical profiles. Combination of TOF-SIMS and FPA data shows a significant depletion of type II H2O along the hourglass boundary, indicating that water diffusion could be controlled by the distribution of alkali cations within channels, coupled to a plug effect of CO2. © 2015 Della Ventura, Radica, Bellatreccia, Cavallo, Cinque, Tortora and Behrens
    • …
    corecore